

CSYM025: Visual Object Software
Date of Issue

Friday, 2nd

December 2022
Last Date for
Submission:

Sunday, 22nd
January 2023

23:59:59

 Module Tutor: Dr Suraj Ajit

Guidelines – Please read carefully:

I. The University of Northampton’s Policy on Academic Integrity and Misconduct will be strictly
implemented.

II. This is not a group project and by submitting this assignment you are asserting that this submission is
entirely your own individual work. Sharing your work with another student or submitting code
that was written by someone else may be deemed academic misconduct.

III. If you have used any external code that you did not write, you must clearly reference it within your
report. See https://libguides.northampton.ac.uk/c.php?g=683675&p=4918336

IV. You must submit all items of the assessment according to the submission procedure stated in this
document. Failure to follow the submission procedure may result in a penalty or capped grade.

V. This assignment/module is used to assess your object-oriented design and programming skills. Hence,
any use of databases and query languages (e.g., SQL) is strictly prohibited and would result in a
fail grade.

Brief:
Design, implement and test a rental property management system using object-oriented principles and data
structures in Java FX. Design should include class diagrams. Testing should include both white box (JUnit
tests) and black box (test logs). Consider the datasets supplied together with following requirements:

Basic System Requirements:
The system must allow the user to:

1. Display details of properties available for rent
2. Register details of new customer
3. Rent property to customers (update availability status of property) for a particular period
4. Generate an invoice with relevant information (including deposit of six months’ rent and agent

fee of 20 percent of 1 month rent)
5. Permanent storage and retrieval of data using object serialisation

Enhancements (in order of importance – high to low):

1. Generate invoice at the end of tenancy (including any deduction for damage)
2. Input/update property information and points of interest
3. Import/export both datasets in csv format (object mapping)
4. Display distance of property from points of interest (e.g., distance from train station, nearest

supermarket)
5. Search/Sort property by price, listing date, no. of bedrooms, history and so on.

A good quality system should be easily adaptable/extensible. You may include any other useful features
relevant to this application. You need to clarify and extract detailed requirements from the tutor during class
hours and are encouraged to use an agile methodology for software development.

Deliverables:
All requirements (A, B and C below) MUST be delivered to achieve a passing grade for this assignment.

A) Technical Report

The report should consist of the following sections (in the same order):
1. A list of all the features implemented in a tabular format with remarks. For example:

Functionalities Implemented (Partial/Full) Remarks
Display details of properties
available for rent

Full Error validation

Register details of new
customer

Full No error validation

Rent property to customers
(update availability status of
property) for a particular period

Partial Error validation

2. UML Class Diagrams showing relationships between the main classes in the model
3. Brief explanation of the main sections/fragments of the code. Provide information that would be

useful for another developer (not an end user!) who may want to extend/maintain your system. You
may want to refer to the class diagrams to explain code.

4. Screenshots of the system showing key features
5. Evidence of Testing:

a. Blackbox Testing: Test logs providing information of all the tests carried out (including any
failed tests for functionality not implemented)

b. Whitebox Testing: Code Listing of the JUnit test cases.
c. List of any bugs and/or weaknesses in your system (if you do not think there are any, then say

so). Bugs that are declared in this list will lose you fewer marks than ones that you do not
declare.

6. References (use Harvard referencing):
 If you have borrowed some code from elsewhere (e.g., from a book or some resource on the web you
 must indicate clearly what they are and include references).

B) Source Code

The source code must be well documented with necessary comments. Consistent and clear indentation of
the code is also important. Source code needs to be submitted in two forms:
(i) As a single ZIP archive (.zip file consisting of all “.java” files, unit tests, data files, executable

jar).
(ii) A commented full listing in a separate Word document named “Full Source Code Listing”.

C) Video Demonstration

In addition to the report, you must submit a video demo (URL) of your assignment. The demo should be
no longer than 10 minutes. Your face and voice need to be clear for the marker to see/hear. This should
include concise code explanation and a walkthrough of the functionalities. The module tutor reserves
the right to invite you for a viva-voce. Poor demo, viva or report could negatively influence all the
marking criteria and may result in a fail grade.

Submission Procedure:
• E-Submission of documents through Turnitin on NILE as TWO separate WORD documents.

[Document 1 = Report & Document 2 = FullSourceCodeListing]
To do this, go to the NILE site for this module and use the link labelled ‘Submit your work’.

• E-Submission of a single ZIP archive that contains all the source code files (.java), unit tests, data
files and ReadMe file. The archive must be named with your student ID, e.g., 12345678.zip where

12345678 is your student ID. To do this, go to to the NILE site for this module
and use the link labelled ‘Submit your work’. Clicking on the link (SourceCodeEsubmission), will
take you into the submission form, where you can upload your ZIP archive using the ‘Attach File’
button (Browse for Local File). Finally, click the Submit button.

• When submitting your video demonstration, use of Kaltura (https://video.northampton.ac.uk/) is
recommended. You must ensure that the video link is accessible to the marker (do not set it to private
access).

• Failure to follow the above submission guidelines may result in a capped or fail grade.

Marking Criteria:

The grade for this assignment will form 100% of the overall assignment grade for the module. Marks are split
according to the following scheme. In general, the following criteria will act as a guide to what you should
expect:

 A B C F G
Design (20%) Excellent design of

program and user
interface. Adherence
to object-oriented
principles. Class
diagrams are very
well designed and
presented.

Good quality
design of
program and
user interface.
Adequate
adoption of
object-oriented
principles. Class
diagrams are
well designed
and presented.

Satisfactory
design of
program and user
interface.
Class diagrams
are satisfactory.

Faulty design of
class diagrams.
Very little
discussion of the
overall design.

No submission or
no submission of
merit

Functionality
(35%)

All criteria for (B)
and many significant
additional features.

All criteria for
(C) and some
significant
additional
features.

Most basic
system
requirements are
met.

Most basic
system
requirements are
not met.

No submission or
no submission of
merit

Testing (15%) Evidence of both
white box and black
box testing with
extensive code
coverage.

Evidence of both
white box and
black box testing
with good code
coverage.

Evidence of either
white box or
black box testing
with satisfactory
code coverage.

No evidence of
any white box or
black box
testing.

No submission or
no submission of
merit

Code quality
and Efficiency
(10%)

Code is very well
structured to enable
white box testing,
reusability and
debugging. Excellent
work on error
handling.

Code is well
structured to
enable white box
testing,
reusability and
debugging. Good
work on error
handling.

Some thought
has been given
on how the code
is structured.
Some work on
error handling.

Hardly any
thought on how
the code is
structured.

No submission or
no submission of
merit

Codio
exercises/eng
agement
(20%)

Timely submission of
all exercises.
Excellent
implementation and
documentation.

Timely
submission of
most exercises.
Very good
implementation.

Satisfactory
submission and
implementation
of exercises.

Poor engagement
and untimely
submission fo
exercises

No submission

